Domain 1 • Lesson 6

Complex Fractions

Getting the Idea

To divide fractions, first find the reciprocal of the divisor. Then multiply the dividend by the reciprocal of the divisor. Reciprocals are two numbers whose product is 1.

You can find the reciprocal of a fraction or whole number by switching the numerator and the denominator. For example, $\frac{3}{8}$ and $\frac{8}{3}$ are reciprocals because $\frac{3}{8} \times \frac{8}{3}=\frac{3 \times 8}{8 \times 3}=\frac{24}{24}=1$.

Example 1

Divide.

$$
\frac{3}{5} \div \frac{2}{3}=\square
$$

Strategy Multiply the dividend by the reciprocal of the divisor.

Step 1 Rewrite as a multiplication problem, using the reciprocal of the divisor.
The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.

$$
\frac{3}{5} \div \frac{2}{3}=\frac{3}{5} \times \frac{3}{2}
$$

Step 2 Multiply.
$\frac{3}{5} \times \frac{3}{2}=\frac{3 \times 3}{5 \times 2}=\frac{9}{10}$
$\frac{9}{10}$ is in simplest form.
Solution

$$
\frac{3}{5} \div \frac{2}{3}=\frac{9}{10}
$$

A complex fraction is a fraction in which the numerator and/or denominator contains a fraction. Recall that a fraction represents a quotient. The quotient is the numerator divided by the denominator (where the denominator is not equal to 0). For example, $\frac{3}{4}=3 \div 4$.

The division expression in Example 1 can be written as a complex fraction: $\frac{\frac{3}{5}}{\frac{2}{3}}$.
The numerator of the complex fraction is $\frac{3}{5}$ and the denominator is $\frac{2}{3}$.
The complex fraction and the division expression are equivalent: $\frac{\frac{3}{5}}{\frac{2}{3}}=\frac{3}{5} \div \frac{2}{3}$.
You can express a percentage as a complex fraction and vice versa.

Example 2

Express 4.25% as a complex fraction.

Strategy Use the definition of percent to write the complex fraction.

Step 1 Convert the percent to a fraction.

Percent means per hundred.
Divide the percentage by 100 and drop the percent sign.
$4.25 \% \rightarrow \frac{4.25}{100}$
Step 2 Convert the decimal to an improper fraction.

$$
\begin{aligned}
& \text { Since } 0.25=\frac{25}{100}=\frac{1}{4}, 4.25=4 \frac{1}{4} . \\
& 4 \frac{1}{4} \rightarrow \frac{(4 \times 4)+1}{4}=\frac{17}{4}
\end{aligned}
$$

Step 3 Write the complex fraction.
Write the improper fraction over 100.

$$
\frac{\frac{17}{4}}{100}
$$

Solution
4.25% written as a complex fraction is $\frac{\frac{17}{4}}{100}$.

Simplifying a complex fraction is the same as dividing its numerator by its denominator.

Example 3

Simplify.
$\frac{\frac{1}{4}}{\frac{1}{12}}=\square$
Strategy Multiply the numerator by the reciprocal of the denominator.
Step 1 Rewrite as a multiplication problem using the reciprocal of the denominator. The reciprocal of $\frac{1}{12}$ is $\frac{12}{1}$.

$$
\frac{1}{4} \div \frac{1}{12}=\frac{1}{4} \times \frac{12}{1}
$$

Step 2 Multiply.

$$
\frac{1}{4} \times \frac{12}{1}=\frac{1 \times 12}{4 \times 1}=\frac{12}{4}
$$

Step 3 Write the answer in simplest form.

$$
\frac{12}{4}=\frac{12 \div 4}{4 \div 4}=\frac{3}{1}=3
$$

Solution

$$
\frac{\frac{1}{4}}{\frac{1}{12}}=3
$$

To divide mixed numbers, first rewrite the mixed numbers as improper fractions. Then follow the rules for dividing fractions.

Example 4

Jamie divided $5 \frac{1}{4}$ pounds of apples into baskets that hold $1 \frac{3}{4}$ pounds each.
How many baskets did she use?

Strategy Rewrite the mixed numbers as improper fractions. Then divide.

Step 1 Write an expression to represent the problem.

$$
\text { Find } 5 \frac{1}{4} \div 1 \frac{3}{4}
$$

Step 2 Rewrite the mixed numbers as improper fractions.

$$
\begin{aligned}
& 5 \frac{1}{4} \rightarrow \frac{(5 \times 4)+1}{4}=\frac{21}{4} \\
& 1 \frac{3}{4} \rightarrow \frac{(1 \times 4)+3}{4}=\frac{7}{4} \\
& 5 \frac{1}{4} \div 1 \frac{3}{4}=\frac{21}{4} \div \frac{7}{4}
\end{aligned}
$$

Step 3 Rewrite as a multiplication problem using the reciprocal of the divisor.

$$
\text { The reciprocal of } \frac{7}{4} \text { is } \frac{4}{7} \text {. }
$$

$$
\frac{21}{4} \div \frac{7}{4}=\frac{21}{4} \times \frac{4}{7}
$$

Step 4 Simplify the factors and multiply.

$$
{ }_{1}^{\frac{2 X}{A}} \times \frac{A^{1}}{\not X_{1}}=\frac{3 \times 1}{1 \times 1}=\frac{3}{1}
$$

Step 5 Simplify.

$$
\frac{3}{1}=3
$$

Solution Jamie used 3 baskets.

Any whole number can be expressed as a fraction. For example, $4=\frac{4}{1}$. So, the reciprocal of a whole number divisor is a unit fraction. For example, the reciprocal of 4 is $\frac{1}{4}$.

Example 5

Divide.

$$
6 \frac{5}{8} \div 3=\square
$$

Strategy Rewrite the whole number as a fraction. Then find the reciprocal.

Step 1 Rewrite $6 \frac{5}{8}$ as an improper fraction. Write the reciprocal of 3.

$$
\begin{aligned}
& 6 \frac{5}{8} \rightarrow \frac{(6 \times 8)+5}{8}=\frac{53}{8} \\
& \text { The reciprocal of } 3 \text { is } \frac{1}{3} .
\end{aligned}
$$

Step 2 Rewrite as a multiplication problem and solve.

$$
6 \frac{5}{8} \div 3=\frac{53}{8} \times \frac{1}{3}
$$

Step 3 Multiply.

$$
\frac{53}{8} \times \frac{1}{3}=\frac{53 \times 1}{8 \times 3}=\frac{53}{24}
$$

Step 4 Simplify the product.

$$
\frac{53}{24}=2 \frac{5}{24}
$$

Solution

$$
6 \frac{5}{8} \div 3=2 \frac{5}{24}
$$

Coached Example

Mr. Camara cuts a 15 -foot wooden board into pieces that are each $1 \frac{2}{3}$ feet long. How many pieces of wood does he have?

Let w represent the number of pieces of wood.
Write a number sentence to represent this problem. \qquad
Rewrite 15 as an improper fraction. \qquad
Rewrite $1 \frac{2}{3}$ as an improper fraction. \qquad
Rewrite the number sentence using improper fractions. \qquad
To divide fractions, multiply the dividend by the \qquad of the divisor.

The reciprocal of the divisor is \qquad .

Rewrite as a multiplication problem using the reciprocal of the divisor.
\qquad \div \qquad $=$ \qquad \times \qquad
Multiply.

Simplify the product. \qquad
Mr. Camara has \qquad pieces of wood.

Lesson Practice

Choose the correct answer.

1. Divide.

$$
\frac{1}{3} \div \frac{1}{8}=\square
$$

A. $\frac{1}{24}$
B. $\frac{3}{8}$
C. $2 \frac{2}{3}$
D. 24
2. Mrs. Chapman made vests for cast members of the school play. She used $\frac{3}{4}$ yard of material for each vest. She used 6 yards in all. How many vests did she make?
A. 1
B. 4
C. 6
D. 8
3. Divide.

$$
\frac{7}{16} \div 2 \frac{3}{8}=\square
$$

A. $\frac{7}{46}$
B. $\frac{7}{38}$
C. $1 \frac{5}{128}$
D. $2 \frac{4}{7}$
4. Which complex fraction is equivalent to 8.15% ?
A. $\frac{815}{100}$
B. $\frac{\frac{15}{8}}{100}$
C. $\frac{\frac{163}{20}}{100}$
D. $\frac{\frac{8}{15}}{100}$
5. Kelly had a ribbon that was $5 \frac{1}{3}$ feet long. Each piece she cut was $1 \frac{1}{3}$ feet long. How many pieces of ribbon did she cut?
A. 1
B. 4
C. 8
D. 12
6. Divide.

$$
2 \frac{1}{5} \div \frac{1}{10}=\square
$$

A. 11
B. 21
C. 22
D. 221
7. What is the value of the following expression?

$$
\frac{1}{2} \div \frac{1}{12}
$$

A. 3
B. 6
C. 9
D. 24
8. Which quotient is less than 1 ?
A. $\frac{5}{8} \div \frac{2}{3}$
B. $\frac{7}{10} \div \frac{3}{5}$
C. $\frac{3}{4} \div \frac{1}{3}$
D. $\frac{7}{8} \div \frac{7}{9}$
9. In math class, Ms. Kuramoto wrote the following complex fraction on the board: $\frac{\frac{5}{6}}{\frac{4}{9}}$.
A. Rewrite the complex fraction as a division expression.
\qquad
\qquad
B. Show the complex fraction $\frac{\frac{5}{6}}{\frac{4}{9}}$ in simplest form. Show your work.
\qquad
\qquad
10. Look at each equation. Is the equation true? Select Yes or No.
A. $\frac{2}{3} \div \frac{1}{9}=6$
\bigcirc Yes No
B. $2 \frac{1}{10} \div \frac{3}{10}=7$
\bigcirc YesNo
C. $3 \frac{3}{5} \div \frac{4}{5}=5 \frac{1}{4}$
\bigcirc YesNo
D. $\frac{7}{9} \div \frac{1}{3}=\frac{3}{7}$
\bigcirc Yes
No
11. Select True or False for each equation.
A. $\frac{9}{16} \div \frac{1}{4}=2 \frac{1}{4} \quad \bigcirc$ True \bigcirc False
B. $2 \frac{1}{2} \div 1 \frac{2}{3}=1 \frac{1}{2}$
\bigcirc True
False
C. $\frac{9}{10} \div \frac{1}{6}=\frac{3}{20}$
\bigcirc True
False
D. $\frac{7}{8} \div 1 \frac{1}{2}=\frac{7}{12}$
\bigcirc TrueFalse
12. Which complex fraction is equivalent to 9.25% ? Circle all that apply.
A. $\frac{\frac{925}{10}}{100}$
B. $\frac{\frac{37}{100}}{4}$
C. $\frac{\frac{37}{4}}{100}$
D. $\frac{\frac{9}{25}}{100}$
E. $\frac{925}{\frac{200}{2}}$
F. $\frac{925}{\frac{40,000}{4}}$
13. Emanuel had $2 \frac{1}{4}$ gallons of paint. He used $\frac{3}{4}$ gallon of paint for each room. Circle the number of rooms that Emanuel painted.

14. Simplify each complex fraction. Write each complex fraction in the correct box.

Equal to $\frac{2}{3}$
Equal to $\frac{1}{2}$
15. Use numbers from the box to complete each equation.
$\frac{7}{8} \div-\quad 3 \frac{1}{2}$
$\frac{1}{16} \div \frac{5}{8}=$ \qquad
$2 \frac{2}{5} \div$ \qquad $=4 \frac{4}{5}$

$\frac{1}{3} \div \frac{2}{3}=$ \qquad | $\frac{1}{10}$ |
| :---: |
| $\frac{1}{4}$ |
| $\frac{1}{2}$ |

$4 \frac{1}{2} \div$ \qquad $=45$

